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Abstract

Dispersal has consequences not only for individual fitness, but also for population dynamics, population genetics and
species distribution. Social Hymenoptera show two contrasting colony reproductive strategies, dependent and independent
colony foundation modes, and these are often associated to the population structures derived from inter and intra-
population gene flow processes conditioned by alternative dispersal strategies. Here we employ microsatellite and
mitochondrial markers to investigate the population and social genetic structure and dispersal patterns in the ant
Cataglyphis emmae at both, local and regional scales. We find that C. emmae is monogynous and polyandrous. Lack of
detection of any population viscosity and population structure with nuclear markers at the local scale suggests efficient
dispersal, in agreement with a lack of inbreeding. Contrasting demographic differences before and during the mating
seasons suggest that C. emmae workers raise sexuals in peripheric nest chambers to reduce intracolonial conflicts. The high
genetic differentiation recovered from the mtDNA haplotypes, together with the significant correlation of such to
geographic distance, and presence of new nuclear alleles between areas (valleys) suggest long-term historical isolation
between these regions, indicative of limited dispersal at the regional scale. Our findings on the ecological, social and
population structure of this species increases our understanding of the patterns and processes involved under independent
colony foundation.
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Introduction

Dispersal is a pivotal process with important ecological and

evolutionary consequences [1]. In animals, it may be defined as

the movement of individuals away from an existing population to a

new area where to settle and reproduce. Inbreeding avoidance by

long distance gene flow, successful colonization of new habitats

and the reduction of local competition for mates and resources are

some of the most important fitness benefits of dispersal [2], [3],

[4]. However, dispersal is also associated with a number of costs

such as the difficulty to find an unoccupied breeding site and a

greater exposition to predators [5]. Dispersal does not only affect

individual fitness, it also structures local populations and, through

the maintenance of long-distance gene flow, it eventually shapes

species evolutionary trajectories.

Ants represent interesting model systems to study population

genetic consequences of various dispersal strategies at different

spatial scales. Many ant species are considered sessile organisms

that can occupy the same nests during years while dispersal is

mainly determined by the ability of sexuals to fly, often associated

to distinctive mating systems [6], [7], [8], [9]. Apart from rare

exceptions [10] males always bear wings while queens flying

capacity varies greatly between species depending on the colony

founding modes. The most ancestral one is independent colony

foundation (hereafter, ICF) [11]. This is a solitary dispersal mode

where virgin queens bearing long wings (macropterous) leave their

mother nest by flight to copulate with one or various males

(monoandry vs polyandry). Thereafter they shed their wings and

start a new colony on their own. In order to rear their first brood,

the founding queens may either forage outside the incipient nest

(semi-claustral ICF) or use fat reserves and the energy released by

the histolysis of their thoracic musculature (claustral ICF). On the

other hand, in the more recently evolved dependent colony

foundation (DCF) [9], queen solitary phase has disappeared. The

queens, either with small non-functional wings or wingless, either

integrate an already established nest, thus leading to highly

polygynous nests which progressively split until forming various

independent colonies (i.e. colony budding) or leave the natal nest

with a worker force to establish a new independent monogynous

colony at a walking distance (i.e. colony fission).

DCF is expected to lead to an increase in population structure

and promoting an isolation by distance pattern at a local scale

[12], [13], [14], [15], [16], [17]. By contrast, the overall advantage

of ICF over DCF is longer dispersal distance by flight, up to

several kilometers in some species [18]. However, the prolonged

exposure to predation and competition by previously established
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colonies can cause high queen mortality under ICF compared to

DCF [8], [19], [20], [21]. The fact that DCF has evolved

independently in several species suggests that this mode of colony

foundation may be advantageous when associated to specific

ecological conditions [9], [22]. A recent study on the ant genus

Rhytidoponera, which exhibits both reproductive strategies, suggests

that the shift from ICF to DCF is gradual and ICF is mostly

attributed to advantages of aerial dispersal in open habitats [23].

Although many studies have addressed ant sociogenetics in

details, there is limited information on the effect of colony

foundation mode on population genetic structure at different

spatial scales. The mode of colony founding, dispersal and

population genetic structure are generally associated, but they

are conceptually different phenomena, so that one should not be

deduced from the other. Moreover, other factors such as

evolutionary history, past environmental and geographical chang-

es, habitat richness and homogeneity, flight efficiency and other

behavioral aspects could have important consequences in the

population structure. For example, it was suggested that frequent

colony relocations in DCF species could compensate for short

dispersal distances leading to population mixing [24]. Moreover,

in ICF, even queens with important flying ability may prefer to

remain on the same plot rather than attempting the risky

colonization of distant areas [25].

The desert ant genus Cataglyphis is composed of species with

DCF (colony fission: C. mauritanica, C. niger, C. cursor, C. floricola, C.

hispanica) and ICF (C. sabulosa, C. livida, C. bicolor). Populations of

the former are genetically structured while those of the latter show

no pattern of isolation by distance [26], [27], [28], [29]. Work on

C. cursor has shown that its genetic structure at different spatial

scales was largely dependent on the sampling distance considered,

habitat patchiness and the sex specific dispersal capability. As

expected, males contribute more to gene flow at local and regional

scales, leading to a pattern of isolation by distance. The limited on

foot dispersal of queens (a few meters) results in population

viscosity where male gene flow is insufficient to homogenize the

female genetic background [30], [31]. Further evidence on the

effect of colony foundation is found in C. mauritanica (DCF) and C.

bicolor (ICF). Both species show contrasting genetic mtDNA

backgrounds with structured populations in the former but not

in the latter [25]. Additionally, the genus Cataglyphis is interesting

for the great variability of social systems, exhibiting monogyny,

polygyny and/or monandry, polyandry, social hybridogenesis and

thelythokous parthenogenesis [32], [33], [34], [35].

Cataglyphis emmae is a common species distributed along

presaharian wadis (semi-dry rivers, drying seasonally) of Northern

Africa (Fig. 1). Colonies are headed by a single macropterous

queen, typical of ICF species. It is the most recent known related

species of C. floricola-tartessica, a fission-dispersing species complex

encountered in Southern Spain ([33]; unpublished data MJJ).

Thus, the C. emmae-tartessica-floricola group constitutes an interesting

model system to test hypotheses on the evolution of dispersal and

its consequences for population genetics. In the present study, we

addressed the following questions: What is the social structure in C.

emmae and how does it compare to other species within the genus?

Does the observed social structure explain the mating system

strategy of this species? How does effective male and female

dispersal shape the population structure throughout different

scales (local, regional)? Are males responsible for most gene flow at

the local scale and is there a correlation of isolation by distance at

the local scale?

Results

Demography and sociogenetics
We found contrasting demographic differences between nests

collected one month before and during the mating period. Nests

collected in early April 2011 were composed of 702.5678.5

workers (mean 6 SE; N = 21). All had a queen, small larvae and a

few colonies had pupae that were not counted. We found a few

large pupae that most likely were sexual offspring but no adult

sexuals were found. By contrast, nests excavated in late April-early

May 2010 contained significantly less workers (217.9624.6,

N = 17; Wilcoxon test: W = 337.5, P,0.001). Because nests were

excavated at the beginning of their diurnal activity we did not

expect any demographic differences by not collecting the few

foraging ants. Furthermore, this small sampling error, difficult to

avoid, should not produce any biased results. Moreover, only 25

out of 33 nests excavated during the 2009 and 2010 mating

periods (Figure S1) had a queen, while no queen was found in the

remaining. All had an abundant brood and 13 contained sexual

adults (Queenless nests: 4 nests with males; 20.566.22, 3 nests

with females; 13.6610.2, and one nest with males and females;

female sex ratio 0.40, Queenright nests: 1 nest with males: 2760,

and 4 nests with females; 1.2560.5). Interestingly, a significantly

higher proportion of queenless than queenright nests contained

sexuals (8 of 8 vs 5 of 25, Yates-corrected x2 = 13.07 df = 1,

P = 0.0003). Numeral sex ratio was not significantly different

between queenless (QL) and queenright (QR) nests (0.4360.18 vs

0.8060.20, respectively, H1,13 = 1.73, p = 0.188).

None of the microsatellite loci showed significant deviations

from HWE in 140 tests (20 re-sampled datasets 6 7 loci). Of the

300 tests of linkage disequilibrium, only 2 were significant (0.004,

P ,0.05). Given that the two tests could be significant by chance

alone, we considered the seven microsatellites to be independent.

Between four and 13 alleles were detected per locus with a mean

observed heterozygosity Ho = 0.47 (range: 0.033–0.664) and a

mean expected heterozygosity He = 0.36 (range: 0.021–0.503).

Genetic descriptive statistics are given in Table 1. During the 2010

field trip we mapped all the nests in a 34634 m plot near Ait

Ibourk. That plot contained 44 nests, the distribution of which was

not significantly different from random (489 nests/Ha21; Clark &

Evans R = 1.060, P = 0.25) (Figure S1). Neighbour nests were

separated by 2.560.2 m (mean 6 SE). Nests were all genetically

differentiated and could be considered as independent societies (G-

test of differentiation between paired nests: P.0.0007 after

Bonferroni correction). The fixation index FIS was significantly

different from zero (20.31660.026, mean 6 SE; 95% CI:

20.422–0.271, t = 12.154 P = 0) suggesting strong outbreeding.

FST estimate (0.2460.025; 95% CI: 0.204–0.288 N = 49) indicated

high genetic divergence between nests within the plot. Yet it was

not significantly different from the overall FST calculated over 74

colonies genotyped in the Ait Ibourk area (FST = 0.2760.021; 95%

CI: 0.204–0.319; t = 0.916; P = 0.361).

Genetic relatedness between workers and the queen rq-w =

0.560.04 (mean 6 SEjacknife N = 24) was not significantly different

from 0.5 expected under strict monogyny (t = 0, N = 24, P = 1.00).

Genetic relatedness between nestmate workers rw-w = 0.4360.03

(mean 6 SEjacknife N = 620) was significantly lower than 0.75

expected between full sibs (t = 10.66, P,0.001). However, all

typed workers were assigned to the queen present in their nest.

When no queen was found in a nest, worker genotypes were

compatible with a single inferred queen. Field sample pedigree

analyses from workers and queens of 21 nests showed that queens

mated with up to 5 males. Absolute and effective patriline numbers

were Mp = 3.0461.04 and Me,p = 2.7461.09, respectively

Cataglyphis emmae Population Structure
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(Table 2). Ten workers from one nest shared the same paternal

alleles supporting the possibility of rare monandry or strong skew

between fathers. The average probability of non-detection due to

two males bearing the same alleles at all loci was negligible (Pnon-

detect = 7.70214). Moreover, queens’ male mates were unrelated to

each other (relatedness among a queen male mates: rm-

m = 0.0160.03 (mean 6 SEjackknife) not significantly different from

0 (t = 0.333, N = 63, P = 0.74)).

We investigated the parentage of 41 males collected from five

queenless nests. Thirty males collected from four of these nests

carried only queen alleles at all loci and were therefore queens’

sons. However eleven males from one queenless nest carried at

least one non-queen allele at one locus and seven of them carried

two non-queen alleles, which were present in the workers. A total

of four distinct non-queen genotypes were found. Thus, the males

of this nest derived from worker arrhenotokous parthenogenesis.

All 26 alate females encountered in four nests bore a non-queen

allele at one locus, which indicated that they had been produced

sexually and not through thelytokous parthenogenesis. Consistent

with this view, the relatedness between the queens and alate

females rq-f = 0.6260.08 did not differ significantly from that

between queens and workers rq-w = 0.5060.04 (t = 1.156,

P = 0.258).

Figure 1. Map of C. emmae sampled nest localities across its distributional range (transect) in Morocco near Ouarzazate in 2010. Pie
charts are Bayesian estimates of the population structure (log likelihood ln P(D/K). saturation at K = 13) based on microsatellite variation of all 27 sites
sampled localities. Dashed areas indicate mitochondrial haplotypes (indicated as H1-7) as inferred from the Medium Joining network. The square by
the wadi indicates the location of the fine-scale sampling plot at 1.8 km from Ait Ibourk.
doi:10.1371/journal.pone.0072941.g001

Table 1. Population genetic descriptive statistics of C. emmae.

All population (Nests = 49,
Nind = 630)

Transect (Nests = 27,
Nind = 146) Total (Nests = 74, Nind = 643)

Locus
Allele size
range (bp) NA HE HO HE HO HE HO

Ccur11 218 –230 5 0.029 0.037 0.17 0.27 0.083 0.125

Ccur26 96–106 6 0.565 0.775 0.41 0.48 0.503 0.664

Ccur51 195–213 10 0.518 0.657 0.48 0.55 0.509 0.626

Ccur61 217–219 13 0.388 0.477 0.44 0.63 0.403 0.529

Ccur89 114–118 4 0 0 0.05 0.08 0.021 0.033

Ccur99 100–122 12 0.566 0.72 0.46 0.06 0.527 0.675

Ccur100 173–190 7 0.467 0.639 0.5 0.62 0.481 0.638

Overall - - 0.362 0.472 0.36 0.46 0.36 0.47

Allele size range (bp); NA, number of alleles; Nind, number of genotyped individuals; HE, expected heterozygosity; HO, observed heterozygosity. All population (Nests
= 49) refers to all nests genotyped from 2009 and 2010 (plot scale).
doi:10.1371/journal.pone.0072941.t001
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Ten dealated queens were found walking throughout the plot on

April, 28th 2010. They were all genotypically different and no

other genotyped colony showed the exact same alleles combina-

tions except for one queen showing the same alleles at all loci than

two ants sampled in a nest 60 m away from the plot, suggesting a

possible origin at that colony.

Population structure
Between-nest nuclear genetic differentiation did not correlate

significantly with geographic distance at a scale of a few meters

(nests sampled within the mapped plot in 2010) or tens of meters

(nests sampled in 2009 near Ait Ibourk), indicating no isolation by

distance within this population (Figure S2, Table S1). At a larger

geographical scale, the results of the Bayesian clustering analysis of

multilocus genotypes in Structure analysed in Harvest [36] showed

that the log likelihood (ln[P(D/K)] saturated at K = 13 (Fig. 2). An

additional ad hoc statistic, DK, which provides a better predictor of

the (K) clusters at the uppermost hierarchical level [37] showed a

peak at K = 2 showing a clear genotypic differentiation to the West

and to the East of Tazentoute.

There was a significant positive correlation between geographic

distance and mtDNA genetic differentiation at a regional scale

along the two wadis that join near the lake of Ouarzazate (Mantel

test: R = 0.47, P,0.001, Figure S1). The mtDNA median joining

(MJ) network recovered seven haplotypes (Fig 3) with the highest

frequency (N = 15) of H2 from all nests near Agrd Noudoz (North

west of Ouarzazate, at down the Atlas mountain slope).

Haplotypes clustered in two groups (H1, H2, H6 and H3, H4,

H5, H7) though H1 also showed considerable differentiation to all

other haplotypes (Fig 1). MtDNA genetic distances within groups

were lower (range: 0.16–1.16%) than between groups (range:

1.92–2.57%) (Table 3). Additionally, the highest differences were

between H1 from Tamnougalt and H3, H4, H5 and H7 ranging

between 2.25–2.57%, indicating a great divergence between them.

The best-fitting model for the Bayesian Inference tree was the

HKY+I (2lnL = 1095.4026, BIC = 2306.5980). The Bayesian

Inference phylogram was congruent with the MJ network and

recovered two monophyletic clades (H1, H2, H6 and H3, H4, H5,

H7). Overall, both methods tended to show an East-West genetic

subdivision along the wadis, with exception of H7 grouped with

the Eastern haplotypes (Fig 3, 4).

Finally, the genetic differentiation between the two wadis (FST)

showed marked differences between nuclear and mtDNA data.

Hierarchical analyses of molecular variance (Table 4) revealed that

the greatest amount of mtDNA variation was between wadis (83–

87%) while most of the genetic variation inferred from microsat-

ellites occurred within wadis (79–82%).

Discussion

The current paper combines field observations and genetic data

in order to analyze the sociogenetic structure, mode of dispersal

and the population genetic consequences at different spatial scales

in a desert ant. The results are congruent with previous

morphological studies suggesting that colonies of C. emmae are

founded independently by a single multiply-mated queen though it

may be claustral or semi-claustral. As expected with ICF,

microsatellite analysis revealed no evidence of isolation-by-

distance at a local spatial scale. Yet, at a regional scale, both

nuclear data and mtDNA haplotypes suggest limited gene flow

even in absence of clear fragmentation of the habitat. This adds to

a series of other studies in the genus Cataglyphis giving a better

understanding of social evolution and life history traits in this

highly diverse group.

Demography and sociogenetics
Colonies of C. emmae contain at most one macropterous queen,

but polyandry (Mp = 3.0) results in a significant reduction of the

genetic relatedness among nestmate workers (rw-w = 0.43) com-

pared to strict monandry/monogyny. Although monogamy is the

ancestral sociogenetic organization of social Hymenopterans,

promoting the evolution of eusociality [38], departure from this

system is frequent, if not the norm among Cataglyphis species. So

far, the combination of strict monogyny and monoandry has been

reported only in C. hispanica [39] whereas levels of polyandry

similar or more elevated than in C. emmae have been reported in C.

cursor (Mp = 5.6–5.8; [16], [35]), C. sabulosa (Mp = 2.5; [27]), C.

livida (Mp = 3.8; [28]), C. savignyi and C. niger (Mp = 9.3 and 5.7

respectively, [29], C. bombycina and C. theryi (Mp = 5.7 and 2.5

respectively; [40]). The reason of such a high frequency of

polyandry in Cataglyphis ants is unknown but it may include

increasing parasite resistance, colony efficiency and a reduction of

incompatible matings [7], [41], [42], [43], [44].

Although genetic data were compatible with monogyny in all

the sampled colonies, no fertile queen was found in 8 out of 33

nests collected during the mating season. Interestingly, adult

sexuals were present in all the queenless nests. By contrast, before

the mating season, just at the end of the hibernation, all nests

contained a queen, more workers and no sexual adults. The fact

that the presence of a fertile queen tends to inhibit or delay the

development of sexual larvae is relatively common in ants [19],

[45], [46]. In the monogynous species C. iberica, one colony

occupies several nests (polydomy) and adult sexuals are generally

Table 2. Queen mating frequency in C. emmae.

Colony nw Mp Me,p

E01 20 3 3.29

E02 19 5 3.25

E04 18 2 2.00

E05 19 2 1.83

E06 20 3 2.73

E07 19 3 2.49

E09 11 3 2.54

E13 20 3 2.39

E20 20 4 4.34

E21 20 4 3.41

E22 20 5 5.03

E23 14 2 1.24

E24 19 3 3.25

E31 18 4 3.42

E32 14 3 1.37

E01D 10 1 1.00

E29U 10 3 3.06

E27C 10 4 4.18

E27D 10 2 2.09

E28H 10 3 3.53

E27B 11 2 1.22

Mean 6 s.e. (1) 15.864.3 3.0461.04 2.7461.09

The number of workers (nw) genotyped, the absolute number (Mp) and
effective number (Me,p) of matings for each colony.
doi:10.1371/journal.pone.0072941.t002
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found in peripheral queenless nests [47]. However, in C. emmae, the

high Fst values encountered at the local scale, the fact that all nests

were different genetic entities and the absence of observation of

social transport during our field-work may discard the possibility of

polydomy. An alternative explanation is that, though in winter all

the workers gather in the royal chamber, in spring sexuals are

transported to peripheral chambers connected to the royal

chamber through complex and ramified galleries. Enhanced nest

complexity may therefore have led us to excavate only a fraction of

the colonies. In addition, important forager mortality in spring not

replaced by new-born ants may contribute to explain the

reduction of worker numbers.

In laboratory conditions, queenless workers of many ant species

(including C. emmae, MJJ pers. obs.) lay haploid eggs by

arrhenotokous parthenogenesis. However, the reality of this

phenomenon has rarely been reported in nature. Our data are

therefore interesting in showing the males encountered in one out

of 5 queenless nests were workers’ sons. Worker egg laying may

result from a selfish strategy or from a hopeless situation after the

death of the mother queen [31]. In contrast to C. cursor, C.

hispanica, C. mauritanica and C. velox [34], [35], [39], we did not find

any evidence of thelythokous parthenogenesis by C. emmae queens

or workers.

Dispersal patterns and phylogeography
The lack of isolation by distance for nuclear markers at a local

scale is congruent with important population mixing promoted by

ICF. This result is also supported by the observation of dealated

queens in our study plot originating from nests located at least

60 m away. This distance is much greater than the average

distance of colony fission in the related species C. floricola

(7.760.9 m; [48]). It is not known if the observed dealated queens

were searching for a nesting site or if they were foraging which

would imply semi-claustral independent colony founding.

At a larger geographical scale, the analysis of mtDNA

polymorphism suggests queen movement between neighbor

populations is limited. However, several mtDNA haplotypes

common in one area were absent in all others with only one

mtDNA haplotype (H3) shared between the two wadis near the

Ouarzazate lake. The low mtDNA genetic diversity observed at a

Figure 2. Population structure of C. emmae assessed by multilocus genotype clustering by Structure. Each colony is represented by a
small vertical bar. (A) population structure following Evanno et al 2005 (K = 2). (B) Population structure following the estimated logarithmic
probability of the data ln P(D/K) being explained (K = 13). Nest codes (27) start from 1 at Agrd Noudoz (Northwest) and continue increasing
numerically to 25 in Skoura (Northeast) and 26–27 at Tamnougalt (Southeast).
doi:10.1371/journal.pone.0072941.g002

Table 3. Nucleotide substitutions (below diagonal) and p-
uncorrected distances (%) (above diagonal) for each pairwise
comparison for all C. emmae haplotypes in the transect.

Haplotypes

H1 H2 H6 H3 H4 H5 H7

H1 - 0.64 0.8 2.42 2.25 2.57 2.41

H2 4 - 0.16 2 1.92 2.25 2.09

H6 5 1 - 1.92 1.76 2.09 1.92

H3 15 13 12 - 1.16 0.16 0.64

H4 14 12 11 1 - 0.32 0.48

H5 16 14 13 1 2 - 0.8

H7 15 13 12 14 3 5 -

doi:10.1371/journal.pone.0072941.t003

Figure 3. Medium Joining (MJ) network of all seven C. emmae
haplotypes based in COI partial sequences (622 bp) showing
the frequency of each haplotype. The size of the circles
corresponds to the haplotype frequency and it is indicated by the
numbers by the circles. The small dark colored circle indicates an
undetected intermediate haplotype state. Numbers by lines indicate
numbers of mutations between haplotypes.
doi:10.1371/journal.pone.0072941.g003
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local scale suggests recent and rare maternal lineage colonization

events as well as efficient female dispersal within localities.

Evidence of this can be seen in the last 30 km of C. emmae

distribution up to Agrd Noudoz, where the Atlas Mountains act as

a geographical barrier and prevent further migration in that

direction (Fig 1).

C. emmae is exclusively distributed along the wadis. The high

level of mtDNA differentiation between Tamnougalt and the other

localities is likely due to a lack of gene flow provoked by arid

mountains where we were unable to locate C. emmae while other

Cataglyphis species were present (e.g. group albicans, MJJ pers. obs.)

during our census (Fig 1). However, the opposition between the

other two clusters (H2, H6 and H3, H4, H5, H7) cannot be

explained by evident habitat fragmentation of the wadis. We

propose three hypotheses, not necessarily mutually exclusive to

explain this pattern: First, aerial dispersal is likely to occur through

the wadis aided by wind currents. Northwestern winds between

Agrz Noudoz to Tarentoute fit the observed pattern of lack of

haplotype diversity in the wadi and the higher haplotypic diversity

towards the Quarzazate lake, where the wind currents flow to. The

trade winds, flowing in a Northeastern direction, are predominant

between the Skoura-Quarzazate wadi and thus are likely to

contribute to the mixing of haplotypes near the Quarzazate lake

area where Northwestern and Northeastern winds meet. Second,

human settlements and environmental disturbance through

agricultural land today differentiate the Western, more arid, and

Eastern, greener, agricultural pastures. This pattern of environ-

mental disturbance between East and West is reflected by the two

highly genetically differentiated groups constituted by H2, H6,

(East) and H3, H4, H5 and H7 (West) (Fig. 2) suggesting important

past historical events resulting in genetic isolation between

localities. This is apparent with the grouping of H1 with the

Western wadi, likely the result of past historical events in the area

and genetic isolation at such locality (Fig. 1). Similarly, the

presence of agricultural lands has been suggested to have an

impact in the habitat colonization in C. mauritanica and C. bicolor

[29]. Third, despite the fact that C. emmae queens seem to bear

large wings suitable for flight (although we never observed one

flying), there is growing evidence that the physical or mechanical

ability to fly is not the primary cause limiting female dispersal and

that ethological factors may be more important for this purpose

[12]. Hence, abiotic (eg., humidity, temperature), and biotic

factors such as ecological constrains to foraging efficiency, resource

availability, mate preferences, competition and predation may

play important roles preventing a more female effective dispersal,

which are likely dependent on the habitats within and in proximity

to the wadis.

The contrasting genetic differentiation between the mtDNA and

nuclear markers within wadis could be an indication of higher

within-population gene flow by males than by queens. This is also

evident from the many nuclear alleles unique to regions and/or

localities [30]. Male-biased dispersal would be in agreement with

field observations of other Cataglyphis ICF species (C. livida, C.

sabulosa) where queen dispersal occurs after mating. Males fly in

swarms on relatively long distances to copulate with queens near

their mother nest entrance [27], [28]. Queens then fly away and

by so doing participate to secondary dispersal of male genes

through the sperm stored in their spermatheca. Similarly to

Cataglyphis, male-biased dispersal was also shown in other ICF

species (e.g., Solenopsis invicta, Formica exsecta), in which queens bear

long wings but contribute less than males to within population

gene flow [49], [50]. However, the comparison of biparentally-

Table 4. Results of comparative hierarchical AMOVAs for four different populations structures analyzed for mitochondrial and
microsatellite data.

Source of variation MtDNA (COI) (%) Microsatellites (%)

1 Among populations (all three wadis) 87.1 21.1

Within populations 12.8 78.8

2 Among populations (Eastern and Western wadis (11 subpopulations)) 83.3 17.5

Within populations 16.6 82.4

3 Among populations (Eastern wadi (3 subpopulations)) 66.67* 16.6*

Within populations 33.33* 83.3*

4 Among populations (Western wadi (8 subpopulations)) 29.4* 15.7

Within populations 70.6* 84.2

All FST and Wst were highly significant (P#0.0001) unless indicated (*). The four analyses were: 1; (Western wadi H2, H6, H7 vs Eastern wadi H3, H5, H4 vs Southern wadi
H1), 2; Eastern and Western wadis divided into subpopulations (11 subpopulations), 3; Eastern wadi (H3, H4, H5) divided into 3 subpopulations, 4; Western wadi (H2, H6,
H7) divided into 8 subpopulations. Subpopulations: sampled points throughout the transect.
doi:10.1371/journal.pone.0072941.t004

Figure 4. A Bayesian Inference phylogram of all seven C.
emmae’s haplotypes obtained from MtDNA COI (622 bp) data.
Values by nodes indicate Bayesian Inference posterior probabilities
(BPP).
doi:10.1371/journal.pone.0072941.g004
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inherited nuclear and mtDNA maternally-inherited markers

should be treated with caution because mtDNA differentiation

may be higher than nuclear due to its smaller effective population

size [51] and larger susceptibility to genetic drift [52]. Further-

more, polyandry also contributes to males having a larger effective

dispersal population size.

Cataglyphis emmae population structure is similar to those of other

monogynous and polyandrous ICF Cataglyphis species like C.

sabulosa, C. livida, C. bombycina, C. theryi [27], [28], [39]. The five

species have high Fst values (0.24, 0.27. 0.21, 0.17 and 0.28

respectively) even at a population scale, with lack of inbreeding

and no isolation by distance. The finding of C. emmae same

mtDNA haplotypes clusters (eg., H2 and H3) many kilometers

distant have also been observed in C. bicolor (ICF) but not in DCF

species such as C. mauritanica and C. cursor [26], [30]. We

hypothesize that C. emmae population structure maybe associated

to their habitat requirement and wind current migration through

the wadis, following a directional dispersal pattern. Future

comparisons of C. emmae with C. floricola-tartessica species complex

is likely to give better insight into the evolutionary and the

ecological consequences of divers mating systems and how and

what factors may influence the transition from ICF (C. emmae) to

DCF (C. floricola-tartessica).

Methods

Ethics statement
No ethics guidelines are required or established by the Spanish

or Moroccan authorities to work on ants. The project licence to

work in Morocco was granted by the AECID (Agencia Española

de Cooperación Internacional y Desarrollo) by the Secretario

General Juan Pablo de Laiglesia (Project Number A4774/06).

Work was carried out on Moroccan public and non-protected land

and the model ant was not a protected species.

Field sampling
All sampling was conducted in the South of the Atlas Mountains

(Morocco). In order to investigate C. emmae sociogenetics and

population genetic structures, we first excavated 16 nests in late

April-early May 2009 (during the mating period) in a zone about

1.8 km South of the locality of Ait Ibourk (Fig. 1). These nests

were separated by 10 to 100 m. For each of them, we recorded the

number of queens and sexuals (males and alate females) and

collected samples of 8–20 workers for genotyping.

A finer scale sampling was conducted at the same site in late

April 2010. To that end, we delimited a 34634 m (1166 m2) plot

at about 50 m from the 2009 site. All nests within the plot were

mapped to estimate nest density and spatial distribution. Active

nests were located by offering a piece of biscuit to workers and

following them to the nest. The map was considered complete

when no new nest was found and all foragers reached previously

marked nests. Sinclair’s (1985) correction of Clark & Evans (1954)

statistics [53], [54] was used to estimate the nearest neighbour

distance and to analyse nest local distribution patterns as explained

in [47]. Seventeen nests located in the plot were excavated and

their full demography (queens, sexuals and workers) was recorded.

Samples of 11 of these nests were used for genotyping. Worker

samples were also taken from the entrance of 22 other nests within

the plot. On the 28th April 2010, 10 dealated queens that were

walking in the mapped plot were also collected for genotyping.

Finally, an additional 21 colonies were excavated in mid April

2011 (approximately one month before the mating period) in the

same plot or close to it for complementary demographic analyses.

The numerical sex ratio (nSR) was calculated for each nest

containing at leat one adult sexual as the proportion of female

sexuals over the total number of sexauls. nSR was compared

between queenless (QL) and queenright (QR) nests (2009–2010)

with a Kruskal-Wallis test (hereafter KW).

To assess the genetic structure at a regional scale we sampled 27

C. emmae (one worker per colony) colonies from 14 sites along a

150 km transect (Fig. 1). This transect covered most of the known

distributional range of C. emmae in the region and followed two

wadis, East and West from Ouarzazate. The most Northwestern

sampled nests were 1 km South from Agrd Noudoz (59 km from

the city of Ouarzazate following the road), before the Atlas

Mountains and the most Eastern nests (31 km from Ouarzazate)

were just 3 km East from Skoura. Two colonies were sampled

from an additional site located 54 km Southeast from Ouarzazate,

3 km before the locality of Tamnougalt, possibly the last locality of

C. emmae before the dune formations of the Saharan desert. At all

localities samples were taken from two nests less than 50 m apart,

with the only exception of one single nest found at locality number

19 (Fig 1). Sampling was limited due to the low numbers of nests

found at the different localities throughout the transect area.

Genetic analyses
A total of 663 workers and sexuals from 74 colonies were

genotyped (average = 9.0 workers per colony). DNA was extracted

from the brain and surrounding musculature. This soft tissue

proved more suitable for efficient PCR amplification than other

body parts containing quitine, such as legs and thorax, which

inhibited the PCR reactions. DNA extraction followed the

HotShot method [55] and was then stored at 220uC.

Seven microsatellite markers developed for C. cursor (Ccur11,

Ccur 26, Ccur 51, Ccur 61, Ccur 89, Ccur 99 and Ccur 100; [35])

were used to study nuclear polymorphisms in C. emmae. Polymerase

chain reactions (PCR) were carried out in pairs (duplex reaction)

or individually. Each 20 ml PCR volume contained approx. 50 ng

DNA, 200 mM of each dNTP, 0.15 mM of each primer, 2 ml

Buffer 10X, ml Mgcl2 and 0.1 unit of taq polymerase (QIAGEN).

The thermal cycle profile was as follows: an initial denaturation

step of 2 min at 94uC; 35 cycles of denaturation at 30 s at 94uC,

annealing for 30 s at 52uC and extension for 45 s at 72uC; and a

final extension for 5 min at 72uC. Following the PCR reactions,

excess primers and dNTPs were removed using enzymatic

reaction of E. coli Exonuclease I, Antartic phosphatase and

Antartic phosphatase buffer (all New England Biolabs). Sequenc-

ing was carried out in both directions using the BigDyeH

Terminator v1.1 cycle sequencing kit (Applied Biosystems)

according to the manufacturer’s instructions. Labelled fragments

were resolved on an automated A3130xl genetic analyzer (Applied

Biosystems). Incomplete terminal sequences and PCR primers

were removed. Control for genotyping errors due to null alleles

and allele drop-outs was performed with Micro-checker [56].

Linkage desiquilibrium, Hardy-Weinberg equilibrium tests and

basic statistics were performed in GENEPOP ON THE WEB

[57]. Due to the strong family structure present in colonies,

genotypes within colonies were not independent. Thus, only a

single individual per colony was used for these tests. A re-sampling

procedure was performed in which a single individual from each

colony was selected at random for a total of 20 replications

according to [58].

Mitochondrial DNA variation was assessed from all colonies

sampled from the regional scale transect (Fig. 1). The primers

Cflor (L) 59-TGCAGGAACAGGATGAACAA-39 and Cflor (R)

59-TGGCCCATCATAAAGATGAA-39 amplified approximately

a 660 base pair fraction of the cytochrome oxidase subunit (COI,

genbank accessions: JQ801346-72). PCR conditions were exactly

Cataglyphis emmae Population Structure

PLOS ONE | www.plosone.org 7 September 2013 | Volume 8 | Issue 9 | e72941



as those described for the nuclear markers. Templates were

sequenced on both strands, and the complementary reads were

used to resolve rare, ambiguous base-calls in Sequencher v.4.9.

After removing PCR primers and incomplete terminal sequences,

622 base pairs were available for analyses. All nucleotide

sequences could be aligned without gaps, when translated into

amino acids using the invertebrate mitochondrial code, stop

codons were absent. Sequences were aligned in Seaview v.4.2.11

[59] under ClustalW2 [60] default settings. Nucleotide substitu-

tions and p-uncorrected distances (%) analyses were performed

with PAUP*4.b.10 [61].

The most appropriate substitution model for the Bayesian

Inference (BI) analyses was determined by the Bayesian Informa-

tion Criterion (BIC) in jModeltest v.0.1.1 [62]. The tree was

constructed using the Bayesian Inference (BI) optimality criteria

under the best fitting model (HKY+I). MrBayes v.3.1.2 [63] was

used with default priors and Markov chain settings, and with

random starting trees. Each run consisted of four chains of

10,000,000 generations, sampled each 10,000 generations for a

total of 750 trees. A plateau was reached after few generations with

25% (250 trees) of the trees resulting from the analyses discarded

as ‘‘burn in’’. In order to assess the relationship between both

morphs, an outgroup was choosen to root the phylogenetic tree. C.

bombycina, from the C. bombycina group, and basal to the C. emmae

group [64] was chosen for this purpose.

Sociogenetics
Descriptive genetic statistics (i.e., the number of alleles, allele

frequencies, observed heterozygosity and expected heterozygosity)

and Wright’s F-statistics (inferred from individuals within nests)

were computed with FSTAT [65] and GENEPOP ON THE

WEB [57]. We tested the genetic entity of nests that were close

(.0.5m) and could therefore be part of the same colony by

genotyping workers at all collection points (nest entrances) and

comparing them using a likelihood (G) based test differentiation in

GENEPOP ON THE WEB. The overall significance was

determined using Fishers’s combined probability test. A Bonfer-

roni correction was applied to account for multiple comparisons.

Samples were considered from different colonies if genotypic

differentiation was statistically significant (a,0.0007) after the

Bonferroni correction.

Relatedness coefficients r were estimated in Relatedness (v 5.0.8)

according to [66]. All colonies were equally weighted and standard

errors were obtained by jackknifing over colonies. Only (N = 36)

colonies with at least eight workers were included in the analyses

(total sample size for relatedness analyses: N = 620 individuals

including 9 and 62 inferred queens and queens mates respectively).

The total of 15 queens were genotyped. C. emmae being strictly

monogynous (see Results), when no queen was found during

excavation, the genotype of the presumed queen was reconstruct-

ed from worker genotypes (N = 9 queens).

Individuals were assigned as belonging to different matrilines if

they did not share an allele with the (presumed) queen at least at

one locus. Assignment of individuals to matrilines was confirmed

with the maximum-likelihood methods implemented in the

program COLONY 1.2 using of 21 colonies with a minimum of

10 workers (average = 15.8) were run in COLONY [67].

The absolute number of matings per queen (Mp, the minimum

number of males inferred from worker genotypes) was estimated

on the basis of mother-offspring allele combinations. Because

males may contribute unequally to the offspring, we estimated the

effective mating frequency (Me, p) following [68]:

Me,p~
n{1ð Þ2

Pk

i~1

p2
i nz1ð Þ n{2ð Þz3{n

where n is the total number of offspring of a queen, k is the

number of males, and p is the proportional contribution to the

brood to the ith male. This estimator has the advantage of being

unbiased by the relative contribution of each male and gives a

lower variance than other estimators. The effective number of

patrilines equals the absolute mating frequency when all males

contribute equally. Because two males may bear the same alleles at

all the loci studied, we estimated the non-detection error by

calculating the probability that two mates bear the same alleles

using [69]:

Pnon{detec of queens mates~Pj

X
i
f 2
ij

Where fij is the allelic frequency at the population level of the i

allele at the j locus.

Worker parentage was investigated by comparing males to

queen genotypes. A total of 41 males were genotyped from five

colonies (N = 5, 8.464.6 males per nest). Queen sons must carry a

queen derived allele at a loci, and as a group, they should not

display more than two alleles at a single loci. Workers’ sons can

carry with the same probability a mother or father derived allele.

A male with non-queen alleles is a workers son. Nevertheless,

worker sons may carry queen alleles at all loci by random chance.

To account for this probability of non-detection, we estimated it

following [70]:

Pnon{detect~
Xn

i

pi 0:5li
� �

Where n is the number of patrilines in the colony, pi, is the

proportional contribution of the ith father to the brood and li is the

number of informative loci analysed at the ith patriline.

Examination of C. emmae asexual reproduction for queen

production, as seen in C. cursor [38], was investigated by

comparison of the queen pedigree to that of her daughters. A

total of 26 alate females belonging to four nests were examined.

Females with alleles identical to that of the mother could

potentially be the result of thelytokous parthenogenesis.

Population structure
The pattern of isolation by distance was tested by plotting (FST/

(1-FST)) coefficients between pairs of colonies against the logarithm

(ln) of geographical distances [71], [72]. The significance of

Spearman rank correlation coefficient (two-tailed) between genetic

differentiation and geographical distance was assessed using

Mantel tests with 10,000 permutations (GENEPOP ON THE

WEB) or in IBDWS (Isolation by distance web service) v.3.16 [73].

Haplotype frequencies and reduction were estimated using a

Median joining (MJ) network constructed with Network 4.5 [74]

with default settings.

The Bayesian clustering software Structure 2.1 [75] was also

used to infer the number of populations (K) independent of spatial

sampling. Analyses were performed using the admixture model

with correlated allele frequencies in twenty independent runs from

K = 1 to K = 20, with a burn-in of 100,000 iterations followed by
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another 100,0000 iterations. Selection of K was determined using

two methods which were run in Harvest v. 0.6.1 [36]: (i) by

plotting the negative log-likelihoods [(ln P(D)] versus K, and (ii)

using the DK method described in [37]. All statistics were

performed in Microsoft Excel or SPSS v.19 and two tailed t-tests

were performed to assess statistical significance between means

when possible.

The extent of geographical structuring of genetic variation

between C. emmae from all sampled Wadis (East and West from

Ouarzazate and at the Tamnougalt locality) was evaluated by Fst

and Wst statistics using the analysis of molecular variance

(AMOVA) in ARLEQUIN [76], [77]. The significance of variance

components and F-statistics were assessed by permutations

(10,000) of the data sets.

Supporting Information

Figure S1 Plots showing the ants nests sampled starting
from a larger (2009 and 2010 nest sampling) to a smaller
scale (only 2010 sampling). The vertices indicate the

measured plot area from where nests were sampled. Lines delimit

different independent approximate transects to assess genetic

divergence by distance (mantel tests) and the circle delimits a

mantel test performed for all nests in such circle. Line 1; (5 nests),

line 2; (6 nests), line 3; (6 nests); lower section of genotyped nests

from 2009 (12 nests in circled area); all nests in mapped plot (31

nests), all nests combined (49 nests). See Table S1 for mantel tests

statistics.

(JPG)

Figure S2 Relationship between geographical distance
and mitochondrial genetic differentiation between nests
for the transect, estimated as FST/(1-FST). The correlation

is highly significant (R = 0.47, p,0.001).

(JPG)

Table S1 Mantel tests analysed and statistics for
genotyped nests from nuclear data (microsatellites). All

results were non significant. See Figure S1 for details of transects

used to test possible correlation of genetic divergence and

geographic distance at a local scale.

(DOC)

Acknowledgments

We are grateful to Ana Carvajal for DNA extractions and Ana Carvajal

and Patrocinio Ortega and Abdallah Dahbi for assistance in the field. We

are grateful to Morgan Pearcy for comments and suggestions and to David

Aragonés and Isabel Afán (LAST, EBD) for their assistance with one of the

figures. We are grateful to C. Doums, C. Peeters and other anonymous

reviewers for their comments on the manuscript. Logistic support for

molecular analysis was provided by LEM-EBD (CSIC). All experiments

comply with current Spanish legislation.

Author Contributions

Conceived and designed the experiments: MJJ RRB XC. Performed the

experiments: MJJ RRB XC SC FA. Analyzed the data: MJJ LL XC S.

Alasaad S. Aron. Wrote the paper: MJJ RRB.

References

1. Clobert J, Danchin E, Dhondt, Nichols JD (2001) Dispersal. Oxford Univ. Press,

Oxford.

2. Waser PM, Austad SN, Keane B (1986) When should animals tolerate

inbreeding? Amer Nat 128: 529–537.

3. Ronce O, Promislow D (2010) Kin competition, natal dispersal and the

moulding of senescence by natural selection. Proc R Soc Biol Sci 41: 3659–3667.

4. Galarza JA, Carreras-Carbonell J, Macpherson E, Pascual M, Roques S, et al.

(2009) The influence of oceanographic fronts and early-life-history traits on

connectivity among littoral fish species. Proc Nat Acad Sci USA 106: 1473–

1478.

5. Yoder JM, Marschall EA, Swanson DA (2004) The cost of dispersal: predation

as a function of movement and site familiarity in ruffed grouse. Behav Ecol 15:

469–476.

6. Hanski I (1999) Habitat connectivity, habitat continuity, and metapopulations in

dynamic landscapes. Oikos 87: 209–219.

7. Hölldobler B, Wilson O (1990) The ants. Belknap/Harvard University Press.

Cambridge.

8. Heinze J, Tsuji K (1995) Ant reproductive strategies. Res Pop Ecol 37: 135–149.

9. Peeters C, Ito F (2001) Colony dispersal and the evolution of queen morphology

in social Hymenoptera. Annl Rev Entomol 46: 601–630.
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20. Boulay RA, Hefetz X, Cerdá S, Devers S, Francke W, et al. (2007) Production of

sexuals in a fission-performing ant: dual effects of queen pheromones and colony

size. Behav Ecol Sociobiol 61: 1531–1541.
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